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Probability of a tossed coin landing on edge
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An experiment is reported in which an object which can rest in multiple stable configurations is
dropped with randomized initial conditions from a height onto a flat surface. The effect of varying the
object’s shape on the probability of landing in the less stable configuration is measured. A dynamical
model of the experiment is introduced and solved by numerical simulations. Results of the experiments
and simulations are in good agreement, confirming that the model incorporates the essential features of
the dynamics of the tossing experiment. Extrapolations based on the model suggest that the probability
of an American nickel landing on edge is approximately 1 in 6000 tosses.

PACS number(s): 05.45.+b, 46.10.+z

I. INTRODUCTION

The sensitivity to initial conditions of the motion of a
rigid body bouncing dissipatively on a surface ensures
that coin tosses and die throws are practically satisfacto-
ry methods of generating random numbers [1]. Although
in principle the motions of coins and dice are affected by
thermal and quantum-mechanical fluctuations, a purely
classical and deterministic description of the motion illus-
trates the reason for the sensitivity to initial conditions.
To achieve randomness of outcomes, however, some ran-
domness must be assumed in the initial conditions al-
though the sensitivity ensures that practical methods of
coin tossing and die throwing will give the expected re-
sults [2-7].

For fair coins and honest dice, the probabilities of the
various final-state outcomes (heads and tails in the case of
a tossed coin) can be predicted from the symmetry of the
problem. When the object does not have an exact sym-
metry, the probability of the various final outcomes is un-
likely to depend on geometrical features alone and surely
involves the details of the dynamics of the bouncing
motion. Some qualitative observations can be made: a
weighted die is more likely to land with the weighted face
resting on the table; a thin coin is less likely to land on its
edge than a thick one. It is not clear at the outset how
other parameters of the problem should affect the results.

This paper will focus mostly on the quantitative issue
of what the probability is that a tossed coin will land (not
just bounce, but come to rest) on its edge. This is ap-
proached in two ways, yielding results which are in close
agreement.

The first approach involves a somewhat simplified
dynamical model of the coin toss. This model includes a
parameter 3 which corresponds to the thickness of the
tossed object. This model is solved through numerical in-
tegration of the equations of motion, given the initial
conditions of the toss. To estimate the probability of
landing on edge, separate runs are carried out for many
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trials with randomly chosen initial conditions.

The second approach has been to carry out experi-
ments in which objects of varying thickness are dropped
onto a table. The probability of landing on edge is es-
timated by the frequency of edge landings observed in a
large ensemble of independent trials. The dependence of
the probability of landing on edge on the thickness of the
objects has been found in this way.

Despite the simple dynamics of the model, the proba-
bility of landing on edge is in striking agreement between
the experiments and the numerical simulations. This sug-
gests that among the dynamical ingredients of the model
are the essential processes which govern the likelihood of
landing on edge.

Solution of the model reveals an unexpected depen-
dence of the probability of landing on edge on the rate of
energy loss of the bouncing coin, quantified in the model
by the coefficient of restitution parameter y. This has im-
plications, including possibly quite practical-if
unethical—applications to the die toss in situations
where the apparent symmetry of the die does not lead to
the probability distribution that the player might be ex-
pecting.

II. MODEL OF A COIN TOSS

The model [8], which will now be described, is admit-
tedly an oversimplification of the actual motion of a
tossed coin, but is introduced for the purpose of identify-
ing the essential dynamical processes which govern the
probability that a tossed coin will land on edge. The
essential dynamical processes are those which, if absent
from the model, lead to qualitatively incorrect predic-
tions of the probabilities. Additional refinements to the
model which may lead to slight improvements in agree-
ment with experiments are not of primary interest here.
While this distinction is crude, it is offered in case the
reader is surprised at the absence of consideration of
many aspects of the motion of actual tossed coins.
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The object which is being tossed will be referred to as
“the coin” even though it could represent a tossed coin or
a rolled die. The coin is assumed to be a rigid object in
the form of a right circular cylinder of height s; and di-
ameter s, as shown in Fig. 1. The ratio of these dimen-
sions is related to the tip-over angle 3 defined by

S2

(D

B=arctan

The mass of the coin is m and the radius of gyration of
the coin through an axis passing through the center of
the coin and parallel to a diameter is k.

The surface onto which the coin is dropped will be re-
ferred to as “the floor.” The floor is assumed to be rigid,
level, and flat. The floor is the surface z=0 in Cartesian
coordinates. The coin is not able to penetrate the floor.
The floor is assumed to be frictionless, so that the x and y
components of the coin’s momentum and the z com-
ponent of the coin’s angular momentum are constants of
the motion. The x and y parts of the motion decouple
from the other phase-space coordinates and the initial x
and y components of both momentum and position can,
without loss of generality, be set to zero. The translation-
al motion of the coin can be described by the height of
the center of the coin Z(¢) as shown in Fig. 2, and the
vertical component of velocity V (t).

If the initial angular velocity of the coin is zero when it
is dropped, and if the mass of the coin is uniformly distri-
buted throughout its volume, then in subsequent motions
the angular velocity will always lie along the same direc-
tion in the xy plane. Furthermore, this angular velocity
will be a constant of the motion between instants when
the coin collides with the floor. Let the direction of the
angular velocity be supposed to be parallel to the x axis.
In this case the rotational motion of the coin can be de-
scribed by a single angular velocity @ and an angular
coordinate 6, the latter being shown in Fig. 2. In prac-
tice, the assumptions of uniform mass distribution and
zero initial angular velocity could be relaxed. For what
follows it will be assumed that the mass distribution is
such that the x axis remains a principle axis of the mo-
ment of inertia tensor. This allows the “coin” to have a
hole in its center as Japanese coins do. The angular ve-
locity could also be allowed to be nonzero at the start of
the toss as long as it is parallel to the x axis.

FIG. 1. The dimensions of the idealized “coin” are illustrat-
ed. The tip-over angle S8 is related to the diameter s, and the
thickness s, through tan(B)=s, /s,.
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FIG. 2. The idealized coin is shown in cross section. The
center of the coin lies a distance Z directly above the origin O.
The orientation of the coin is specified by angle 6. The dis-
tances of the four corners above the floor are denoted by Z 1oy
where j; and j, take the values *1.

At the outset of a toss, the coin is dropped with initial
phase space coordinates Z;, V,, 8,;, and w,. For simpli-
city, only tosses with V;=w,;=0 have been considered.
The initial orientation 8, is selected by a random number
generator in the range from O to 7. The initial height Z,
is always chosen to be large enough that the motion of
the coin is effectively randomized. The number of col-
lisions with the floor made by the coin during the impor-
tant part of the motion is never less than 10 and usually
20 or more. In addition, if the basins of attraction of the
outcomes can be seen in a plot of the initial angles of a
large number of tosses then Z; is considered to be too
small. The value of Z, required depends on the
coefficient of restitution parameter defined below. It is
not advantageous to choose Z, overly large because of in-
creases in computing time.

When the coin is not in contact with the floor, the only
force on it is via the gravitational acceleration g, which
goes along the minus z axis. Air friction is ignored. To
make the parameters of the problem dimensionless, units
are chosen such that s? +s3=4,g=1and m =1.

The mechanical energy of the coin is

E=Z 1)+ 1V(1)+1k2w(1) (2)

using the dimensionless units.

Consider a phase of the motion in which the coin does
not come into contact with the floor. Let the time ¢ be
set to zero at some moment at which the phase-space
coordinates of the coin are Z,, V,, 6;, and . The angu-
lar velocity w remains a constant of the motion and the
other coordinates are given at time ¢ by

Z()=Zy+Vot—1t?, 3)
Vit)=Vy—t, (4)
0(t)=0,+ ot . (5)

The coin collides with the floor when one of the four
corners, as illustrated in Fig. 2, comes into contact with
the floor. The possibility of two corners being simultane-
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ously in contact with the floor does not have zero proba-
bility as explained below. However, the present discus-
sion assumes that only one corner of the coin contacts the
floor during a collision. In addition, the temporal dura-
tion of the collision is assumed to be zero, so that the
contact occurs at a single point on the floor.

The four corners of the coin are labeled by integers j,
and j,, which take the values £1. The height of corner
(1,J2) at time ¢is Z; ; (1), and, during a time interval in

which the coin does not contact the floor is given by
Z; ,()=2Zy+ Vot — L2+ j sin(6,+wt +j,B) . (6)

The time at which the coin will next hit the floor is the
smallest time ¢, such that for some choice of j; and j,,

Z; ;,(t.)=0. The method by which ¢, can be systemati-

cally and efficiently calculated has not been reported else-
where, so it will be described here in some detail.

For any choice of j; and j,, the smallest positive root
of Eq. (6) is not less than the smallest positive root of the
equation

0=Z,+ Vot —Lt>+jsin(6y+j,B)
+j o cos(6,+j,B)t — Law’t? @)

where use has been made of the inequality

2
sin(ax)<a?. (8)

dx?

Suppose that at some point in the coin’s motion, its
phase space coordinates are Z,, V,, 6, and @ and we
want to know the next time ¢, (starting at 0) at which the
coin will contact the floor. There are two cases, based on
whether Z, is above or below 1.

Case 1. If Z;>1 then find the (single) positive root of
the equation

1=Z,+ Vot —11?. 9

A positive root, denoted ?;, must always exist to this
equation, so long as Z,> 1. Next, replace Z,, V), 6, and
o with the new values of these phase-space coordinates at
time ¢;, making use of Eqgs. (3), (4), and (5). Finally,
proceed to case 2.

Case 2. If Z; =1 then for each j, and j, find the small-
est positive root of Eq. (7). A positive root must exist for
each case since the coin has not yet penetrated the floor.
Let the smallest of these four roots be denoted z,. Re-
place Z,, V,, 6y, and o with the new values at ¢, using
Egs. (3), (4), and (5). Finally, proceed to either case 1 or
case 2 based on the new value of Z|,.

This process is repeated until the additional changes in
the phase-space coordinates become comparable to
machine precision, which was double precision for this
work. The phase-space coordinates of the coin give its
position and orientation upon collision with the floor and
give its velocity and angular velocity immediately before
the collision. These latter two quantities will change
discontinuously during the collision. There is no possibil-
ity either that the iterations will not converge or that the
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algorithm will miss the smallest root and converge to the
wrong root.

As mentioned previously, the collision with the floor
has negligible duration. The conventional assumption is
that there is a coefficient of restitution parameter y
(0=y =1). The case y =1 corresponds to no energy loss
during the collision. Let V' and o’ refer to just before
and let V"' and o'’ refer to just after the collision. Then

(V'+yo')
V'=V'—(1+y)ki——"=-, (10)
T )
(V'+yo')
o'"'=0'—(1+y)y—F""——, (1n
TV )
where y is the position of the contact point, given by
y=jicos(6+),B), (12)

using those values of j; and j, which gave the smallest
root of Eq. (7).

Equivalently, one can consider the velocity of the
corner of the coin which is colliding with the floor just
before and just after the collision. This velocity has com-
ponents Uy, U, just before and U,’, U, just after. It fol-
lows from Egs. (10) and (11) that U,’=—yU,. This
makes the connection with the usual interpretation of the
coefficient of restitution.

The change of the coin’s energy during the collision is

1 12
AE=—§(1——72)(V—+¥Q—Z——. (13)
(1+y*/k”)
When y <1, AE is negative, so the collisions are partly
inelastic.

In an experimental situation, the value of ¥ depends on
the material of the coin, the material of the floor, and the
structure of the floor. In addition, dependence of the res-
titution on V’, 6, and o' is expected, but ignored in this
simplified treatment. Reference [7] describes how ¥
(which they call ) can be estimated by replaying simula-
tions of a toss in real time and coding the computer to
emit a sound for each collision. Adjusting ¢ until the
computer simulation sounds like a real toss, they took y
to be 0.5.

Since only the outcome of the toss is of interest, it is
sufficient to stop the simulation once the energy E goes
below 1. The coin is projected to land on edge if 6 is in
the range nm+(w/2)—B<0<nw—+(w/2)+p for any in-
teger n. Otherwise, the coin is projected to land on a
face—heads or tails.

The above discussion adequately describes most tosses.
It sometimes happens that a toss requires an infinite num-
ber of collisions with the floor before the outcome is
determined. This situation occurs only when y < 1. This
is illustrated in Fig. 3, for a coin with ¥ =0.8. Because of
this possibility, it is necessary to explain how this situa-
tion is handled.

The transition from bouncing to sliding motion is
recognized in the computer program by the failure of the
energy E to decrease more than a negligible amount over
several bounces. If no provision is made in the computer
program, the coin will become stuck at a collision point
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FIG. 3. The motion of the coin is shown as a solid line in a
plot of Z vs 8. The parameters of the coin are kK =0.5, =0.4,
and ¥ =0.8. The initial conditions of the toss are Z; =4, V;=0,
6,=1.489, and wy; =0. For purposes of illustration, the motion
has been followed as the energy goes below 1. An example of
the transition from bouncing to sliding motion can be seen as
the coin settles down to a landing on its edge. The points of col-
lisions with the floor are marked by light dashes. The accumu-
lation point of bounces is indicated by the increasing density of
dashes. The sliding motion continues until 6 reaches /2,
where the motion reverts to bouncing as the energy continues to
decrease.

NI+

and the energy will never go below 1.

The velocities ¥ and w correspond to motion in the Z6
plane which is tangential to the curve corresponding to
contact of the coin with the floor. There is no sliding
friction in this model, so the coin can move continuously
along this curve with no loss of energy. Unlike the roller
skater on a spherical roof, the normal force never goes to
zero as the velocity increases, so the coin will stay in con-
tact with the collision line, shown as a dotted line in Fig.
3. In addition, when E > 1, the coin cannot reverse the
direction of its motion along the collision line.

When the coin reaches a cusp in the collision line,
which can occur at 6=n(w/2) for any integer n, the
motion of the coin must change abruptly. The
specification of the model does not unambiguously deter-
mine what will happen next. The choice made in the
simulations reported here is to continue the motion as if
the coin is colliding with the floor with contact only at
the corner that is coming into new contact with the floor.
The result is a transition back from sliding to bouncing
motion, as shown in Fig. 3.

This now completes the specification of the model.
Similar models have been reported elsewhere. In Ref. [3],
the model has the same phase space, but stops the motion
at the first collision with the floor. References [2] and [6]
correspond to the present model, but with S=0. Refer-
ence [4] also has B=0, but incorporates sliding friction
with the floor so that the phase space of the motion is
larger. Reference [5] studies the present model with =0
and ¥y =1. Reference [7] is identical to the present model
for the special case B=1/4, except for a different con-
tinuation of sliding motion when a cusp in the collision
line is reached.
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FIG. 4. (a) The points of measurement of the dimensions of
the brass nuts given in Table I are illustrated. (b) The method of
measuring the tip-over angle 3 is shown. The angle of tilt of a
support is slowly increased until the object tips over.

III. EXPERIMENT

The experiment that has been carried out involves
dropping machined pieces of metal of varying shapes into
a hard, flat, smooth table. The table surface was a layer
of smooth plastic sheet glued to a sheet of plywood. The
surface was nearly level as judged from the straightness
of the path of a ball bearing rolling across the surface.
The available area measured 40X 60 cm?. Objects that
fell off the table or struck the wall on one side were not
counted. The initial height was limited since too large a
height led to most of the tosses being discounted, making
the experiment too tedious. In practice a height of 15 cm
was used. The method for dropping the objects involved
placing two or three similarly prepared nuts on a hor-
izontal card, and manually sweeping them off with a
slowly moving stick.

The objects used were brass nuts which were machined
down to various thicknesses. The general shape of the
objects is shown in Fig. 4(a). The grinding procedure re-
quired care, since there was a tendency for the machined
sides to become out of right angles with the edges. The
six sides of the nuts were not altered.

The detailed characterization of the geometrical prop-
erties of the nuts will be described after the model has
been introduced, since the description of the model will
make it clear which characteristics of the nuts are impor-
tant to their probability of landing on edge.

The results of the experiments with the brass nuts are
shown in Table I. The probability of landing on edge, P,,
is the ratio of the number of landings on edge to the num-
ber of tosses that were not discounted.

TABLE 1. Results of experiments with brass nuts.

Nut S5 sy Counted Landed

label (mm) (mm) tosses on edge P,
A,B  12.55+0.02 5.76+0.02 373 44 0.118
D,E  12.52+0.01 4.63%+0.05 810 51 0.063
G,H 12.55+0.02 3.51%+0.04 739 17 0.023
J,K,L 12.52+0.02 2.93+0.04 1500 20 0.013
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IV. DISCUSSION

The probability of landing on edge is P,. If Z, is
sufficiently large and 6, has a smooth random distribu-
tion [6], then P, depends only on k, 3, and y. Only simu-
lations with the radius of gyration parameter k=1 are
reported here, since that corresponds to a uniform mass
distribution in the case that 3 is small.

The numerical results of simulations to estimate P, are
shown in Fig. 5 for coins with ¥ =0.4, 0.6, and 0.8. By
symmetry, P, must equal ;- when B=m/4. There is an
obvious trend that P, gets small as 8 approaches zero.
Furthermore, when (3 is held constant, P, is greater for
small values of y. The statistical uncertainties (one stan-
dard deviation) are never more than +119%, which is
comparable to the symbol size in the plot. The uncertain-
ties for larger values of 3 are on the order of 2%.

At this point, the model calculation will be related to
the experiment that was performed. Since, as illustrated
schematically in Fig. 4(a), the brass nuts do not have a
simple shape, the identification of a value of 3 to corre-
spond with a model calculation requires some care. The
choice made here is based on thinking of 8 as the max-
imum angle by which the object can be tilted without tip-
ping over. The method for measuring the tip-over angle
is shown in Fig. 4(b). Tip-over angles for the brass nuts
are shown in Table II. For the thicker nuts, this method
could not be applied since the objects began to slide be-
fore they tipped over. For these cases, 3 is simply ob-
tained from the dimensions of the nut, given in Table I,
as measured with a micrometer across flat faces of the
nut. For either method, there is an uncertainty of the
value of 3 since the tip-over angle can depend on the ini-
tial orientation of the nut. The average of all tip-over an-
gles is used.

For simplicity, the radius of gyration k has been set to
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Tipover angle B

FIG. 5. The probability of landing on edge P, is plotted vs
the tip-over angle f3 for a range of values of the coefficient of res-
titution parameter . The value of & is % Results of the experi-
ment described in the text are plotted as open rectangles. The
vertical dimension of the rectangles corresponds to one stan-
dard deviation above and below the observed edge landing fre-
quency. The horizontal dimension of the rectangles reflects the
variation in the tip-over angle among the 12 tipping modes of
the brass nuts.
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TABLE II. Tip-over angles for the brass nuts.

Aspect ratio

Nut angle Tip-over angle
label (rad) (rad)
A,B 0.430+0.002 slides first
D,E 0.354+0.004 slides first
G,H 0.273+0.003 0.23+0.02
J,K,L 0.230£0.003 0.19+0.02

0.5 for all the nuts. Detailed estimates of k based on the
mass distribution differ by only a few percent, and are not
used here.

With this identification of 3, the probability of landing
on edge P, is shown for the four nut thicknesses in Fig. 5
as open rectangles. The vertical dimension of the rectan-
gles comes from statistical uncertainty and one standard
deviation above and below the mean is shown. The hor-
izontal dimension shows the uncertainty in /3.

The coefficient of restitution of the table was estimated
by dropping one of the brass nuts from a height of 31 cm
and observing the height of the first rebound. Rebound-
ing nuts that were spinning rapidly were discounted.
Twenty-five drops were required to obtain ten nearly
vertical rebounds. A rebound height of 18 cm was typi-
cal. This corresponds to a value of ¥y =0.76. An alter-
nate measurement of ¥ was obtained by dropping a brass
washer which was constrained to drop directly on its
edge. A drop of 31 cm resulted in a rebound of 18 cm,
giving the same result for y.

In Fig. 5, the experimentally obtained probabilities are
all consistent with ¢ being 0.4. It is not clear whether the
differences in the values of ¥ result from limitations of
the measurement method or the approximations of the
model.

Since the agreement between the model and experi-
ment shows no systematic deviation as 3 gets smaller, it is
tempting to extrapolate the curve to thicknesses of famil-
iar coins. One example will be considered here, which is
the American nickel (five American cents, 5¢). The diam-
eter of this coin is 21.25 mm and the thickness is 1.96 mm
at the rim. This gives an aspect angle of 0.092 rad. How-
ever when tip-over angles are measured, the results are
0.037 rad for tipping over with the President’s head up
and 0.051 rad for tipping over with the President’s head
down. In other words, a slight disturbance of a nickel
which is set up on edge on a level table is more likely to
result in the coin falling over “heads.” The experiment
to verify this is entertaining and easy to perform. The
difference between tip-over angles between heads and
tails is reproducible among several coins of this denom-
ination. If #=0.04 is selected as a representative tip-over
angle, the extrapolation of the model leads to a probabili-
ty of landing on edge of 1 in 6000 tosses. This has not
been tested experimentally.

As a check on whether the hexagonal shape of the
brass nuts has an effect on P,, we used a British one-
pound coin (1£) for which 8 was found to be 0.14. In
1000 tosses of this coin, there were 6 landings on edge.
Extrapolation of the model, using the same value of 7,
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0.4, leads one to expect 5.5 landings on edge out of 1000
tosses. Evidently, the model also works for the one-
pound coin.

The simple model of a coin toss introduced here does
not take into account the full dynamics of the bouncing
coin. It is not clear which of these effects are most im-
portant to the value of P,. The floor has been assumed to
be frictionless in this model. In an actual coin toss, there
is a horizontal component of impulse during the collision
with the floor. The relevance of the Amontons law of
friction is not clear, although this is a reasonable phe-
nomenological treatment [4]. Real “floors” are certainly
not rigid and smooth and perhaps not even level. It is
clear that the motion of the coin involves six degrees of
freedom and not two. This does not necessarily make

DANIEL B. MURRAY AND SCOTT W. TEARE 48

simulation of the motion much more difficult, but it in-
creases the number of unknown phenomenological pa-
rameters in the model. Finally, the effect of internal vi-
brational degrees of freedom of the coin should not be
discounted, based on the audible ringing during the toss.
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